Years 1～3

Year 1

$+=$ signs and missing numbers

Children need to understand the concept of equality before using the＇$=$＇sign．Calculations should be written either side of the equality sign so that the sign is not just interpreted as＇the answer＇．
$2=1+1$
$2+3=4+1$
Missing numbers need to be placed in all possible places．

$$
\begin{array}{ll}
3+4=\square & \square=3+4 \\
3+\square=7 & 7=\square+4
\end{array}
$$

Counting and Combining sets of Objects

Combining two sets of objects（aggregation）which will progress onto adding on to a set
（augmentation）
$\begin{array}{cccc}\circ & 0 & \circ & \circ \\ \circ & 0 & 0 & 0 \\ \circ & \circ & 0 & 0\end{array}$
12
00°
000
000

Understanding of counting on with a numbertrack．

Understanding of counting on with a numberline （supported by models and images）．
7＋4

Year 2
Missing number problems e．g $14+5=10+\square$
$32+$

$$
\square+\square=100 \quad 35=1+\square+5
$$

It is valuable to use a range of representations（also see Y1）．Continue to use numberlines to develop understanding of：
Counting on in tens and ones

Partitioning and bridging through 10.
The steps in addition often bridge through a multiple of 10
e．g．Children should be able to partition the 7 to relate adding the 2 and then the 5 ．
$8+7=15$

Adding 9 or 11 by adding 10 and adjusting by 1
e．g．Add 9 by adding 10 and adjusting by 1
$35+9=44$

Towards a Written Method

Partitioning in different ways and recombine | $47+25$ | 47 | 25 | $60+12$ |
| :--- | :--- | :--- | :--- |

 72
相相相目口

Expanded written method

$40+7+20+5=$
$40+20+7+5=$

$$
\begin{array}{r}
40+7 \\
+\frac{20+5}{60+12}=72
\end{array}
$$

$60+12=72$

Year 3

Missing number problems using a range of equations as in Year 1 and 2 but with appropriate，larger numbers．

Partition into tens and ones

Partition both numbers and recombine．
Count on by partitioning the second number only e．g．
$247+125=247+100+20+5$

$$
\begin{aligned}
& =347+20+5 \\
& =367+5 \\
& =372
\end{aligned}
$$

Children need to be secure adding multiples of 100 and 10 to any three－digit number including those that are not multiples of 10 ．

Towards a Written Method

Introduce expanded column addition modelled with place value counters（Dienes could be used for those who need a less abstract representation）

Leading to children understanding the exchange between tens and ones．

Some children may begin to use a formal columnar algorithm，initially introduced alongside the expanded method．The formal method should be seen as a more streamlined version of the expanded method，not a new method．$+125$

Extra Guidance - Addition		
Year 1	Year 2	Year 3
Mental Strategies (addition and subtraction) Children should experience regular counting on and back from different numbers in 1s and in multiples of 2,5 and 10 . Children should memorise and reason with number bonds for numbers to 20 , experiencing the $=$ sign in different positions. They should see addition and subtraction as related operations. E.g. $7+3=10$ is related to 10 $-3=7$, understanding of which could be supported by an image like this. Use bundles of straws and Dienes to model partitioning teen numbers into tens and ones and develop understanding of place value. Children have opportunities to explore partitioning numbers in different ways. $\text { e.g. } 7=6+1,7=5+2,7=4+3=$ Counting on with a bead bar/number line Bead bar and number line (showing 10s) encourages use of number bonds and place value for added efficiency Children should begin to understand addition as combining groups and counting on.	Mental Strategies Children should count regularly, on and back, in steps of 2,3,5 and 10. Counting forwards in tens from any number should lead to adding multiples of 10. Number lines should continue to be an important image to support mathematical thinking, for example to model how to add 9 by adding 10 and adjusting. Children should practise addition to 20 to become increasingly fluent. They should use the facts they know to derive others, e.g using $7+3=10$ to find 17 $+3=20,70+30=100$ They should use concrete objects such as bead strings and number lines to explore missing numbers $-45+\ldots=50$. As well as number lines, 100 squares could be used to explore patterns in calculations such as $74+11,77+$ 9 encouraging children to think about 'What do you notice?' where partitioning or adjusting is used. Children should learn to check their calculations, by using the inverse. They should continue to see addition as both combining groups and counting on. They should use Dienes to model partitioning into tens and ones and learn to partition numbers in different ways e.g. $23=20+3=10+13$. Vocabulary +, add, addition, more, plus, make, sum, total, altogether, how many more to make...? how many more is... than...? how much more is...? =, equals, sign, is the same as, Tens, ones, partition	Mental Strategies Children should continue to count regularly, on and back, now including multiples of $4,8,50$, and 100 , and steps of $1 / 10$. The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged. This will help to develop children's understanding of working mentally. Children should continue to partition numbers in different ways. They should be encouraged to choose the mental strategies which are most efficient for the numbers involved, e.g. Add the nearest multiple of 10 , then adjust such as 63 +29 is the same as 63+30-1; counting on by partitioning the second number only such as $72+31=72+30+1=102+1=103$ Manipulatives can be used to support mental imagery and conceptual understanding. Children need to be shown how these images are related eg. What's the same? What's different? Vocabulary Hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100, inverse, rounding, column subtraction, exchange See also Y1 and Y2

Vocabulary
Addition, add, forwards, put together, more than, total, altogether, distance between, difference between, equals = same as, most, pattern, odd, even, digit, counting on.

Generalisations

True or false? Addition makes numbers bigger. True or false? You can add numbers in any order and still get the same answer.
(Links between addition and subtraction) When introduced to the equals sign, children should see it as signifying equality. They should become used to seeing it in different positions.

Key Questions

How many altogether? How many more to make...? I add ...more. What is the total? How many more is... than...? How much more is...? One more, two more, ten more...
What can you see here?
Is this true or false?
What is the same? What is different?
Problem Solving using the Singapore Bar Method Using images to begin with, moving to a more abstract representation when secure.
Peter has 3 marbles. Harry gives Peter 1 more marble. How many marbles does Peter have now?

?

CONCRETE

?
ABSTRACT

Near multiple of 10, tens boundary, More than, one more, two more... ten more... one hundred more.

Generalisation

Noticing what happens when you count in tens (the digits in the ones column stay the same)
Odd + odd = even; odd + even = odd; etc
show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. This understanding could be supported by images such as this.

Some Key Questions

How many altogether? How many more to make...? How many more is... than...? How much more is...? Is this true or false?
If I know that $17+2=19$, what else do I know? (e.g. $2+17=19 ; 19-17=2 ; 19-2=17 ; 190-20=170$ etc). What do you notice? What patterns can you see?

Problem Solving using the Singapore Bar Method

Using a more abstract representation when secure. E. 9 Dylan has 37 coloured pencils and he buys 30 more. How many does he have now?

Generalisations

Noticing what happens to the digits when you count in tens and hundreds.
Odd + odd = even etc (see Year 2)
Inverses and related facts - develop fluency in finding related addition and subtraction facts.
Develop the knowledge that the inverse relationship can be used as a checking method.

Key Questions

What do you notice? What patterns can you see?

When comparing two methods alongside each other: What's the same? What's different? Look at this number in the formal method; can you see where it is in the expanded method/ on the number line?

Problem Solving using the Singapore Bar Method

 E. 9 There are 334 children at Springfield School and 275 at Holy Trinity Nursery. How many children are there altogether?

CALCULATION POLICY - ADDITION Years 4~6		
Year 4	Year 5	Year 6
Missing number/digit problems: Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Written methods (progressing to 4-digits) Expanded column addition modelled with place value counters, progressing to calculations with 4digit numbers. Compact written method Extend to numbers with at least four digits. Children should be able to make the choice of reverting to expanded methods if experiencing any difficulty. Extend to up to two places of decimals (same number of decimals places) and adding several numbers (with different numbers of digits). $\begin{array}{r} 72.8 \\ +54.6 \\ \hline 127.4 \\ \hline \end{array}$	Missing number/digit problems: Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Children should practise with increasingly large numbers to aid fluency $\text { e.g. } 12462+2300=14762$ Written methods (progressing to more than 4digits) As year 4, progressing when understanding of the expanded method is secure, children will move on to the formal columnar method for whole numbers and decimal numbers as an efficient written algorithm. $\begin{array}{r} 172.83 \\ +\quad 54.68 \\ \hline 227.51 \\ \hline 111 \end{array}$ Place value counters can be used alongside the columnar method to develop understanding of addition with decimal numbers.	Missing number/digit problems: Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Written methods As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be secured. Continue calculating with decimals, including those with different numbers of decimal places Problem Solving Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen their understanding.

Extra Guidance - Addition

Year 4
Mental Strategies
Children should continue to count regularly, on and
back, now including multiples of $6,7,9,25$ and

The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate.
Children should continue to partition numbers in different ways.
They should be encouraged to choose from a range of strategies:

- Counting forwards and backwards: 124-47, count back 40 from 124, then 4 to 80 , then 3 to 77
- Reordering: $28+75,75+28$ (thinking of 28 as $25+3)$
- Partitioning: counting on or back: 5.6 + 3.7,5.6 $+3+0.7=8.6+0.7$
- Partitioning: bridging through multiples of 10: 6070-4987, 4987+13+1000+70
- Partitioning: compensating $-138+69,138+70$ - 1
- Partitioning: using 'near' doubles $-160+170$ is double 150, then add 10 , then add 20 , or double 160 and add 10 , or double 170 and subtract 10
- Partitioning: bridging through 60 to calculate a time interval - What was the time 33 minutes before 2.15 pm ?
- Using known facts and place value to find related facts.

Mental Strategies

Children should continue to count regularly, on and back, now including steps of powers of 10.

The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate.

Children should continue to partition numbers in different ways.

They should be encouraged to choose from a range of strategies:

- Counting forwards and backwards in tenths and hundredths: $1.7+0.55$
- Reordering: $4.7+5.6-0.7,4.7-0.7+5.6=4+$ 5.6
- Partitioning: counting on or back $-540+280$, $540+200+80$
- Partitioning: bridging through multiples of 10:
- Partitioning: compensating: 5.7 + 3.9, 5.7 + 4.0 0.1
- Partitioning: using 'near' double: $2.5+2.6$ is double 2.5 and add 0.1 or double 2.6 and subtract 0.1
- Partitioning: bridging through 60 to calculate a time interval: It is 11.45 . How many hours and minutes is it to 15.20 ?
- Using known facts and place value to find related facts.
Vocabulary
tens of thousands boundary,
Also see previous years
Generalisation

Mental Strategies

Consolidate previous years.
Children should experiment with order of operations, investigating the effect of positioning the brackets in different places, e.g. $20-5 \times 3=5 ;(20-5) \times 3=45$

Vocabulary

See previous years

Generalisations

Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering.

Sometimes, always or never true? Subtracting numbers makes them smaller.

Some Key Questions

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?

Problem Solving using the Singapore Bar Method

E.g Peter is playing Space Explorer on his computer. He finished 13 of the levels last week and 25 of the remaining levels this week. He has 12 more levels to complete. How many levels does Space Explorer have?

Vocabulary

add, addition, sum, more, plus, increase, sum, total, altogether, double, near double, how many more to make..? how much more? ones boundary, tens boundary, hundreds boundary, thousands boundary, tenths boundary, hundredths boundary, inverse, how many more/fewer? Equals sign, is the same as.

Generalisations

Investigate when re-ordering works as a strategy for subtraction. Eg. 20-3-10=20-10-3, but 3 - 20-10 would give a different answer.

Some Key Questions

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?
Problem Solving using the Singapore Bar Method E.g. 8 children each download 59 songs to play on their iPod. How many songs do they have altogether?

Sometimes, always or never true? The difference between a number and its reverse will be a multiple of 9 .

What do you notice about the differences between consecutive square numbers?

Investigate $a-b=(a-1)-(b-1)$ represented visually.

Some Key Questions

What do you notice?
What's the same? What's different?
Problem Solving using the Singapore Bar Method E.g. Every day for 4 days Helen scored 7.5 in a test. On the fifth day she scored 8 . What was her total score?

