| CALCULATION POLICY - MULTIPLICATION <br> Years 1~3 |  |  |
| :---: | :---: | :---: |
| Year 1 | Year 2 | Year 3 |
| Understand multiplication is related to doubling and combing groups of the same size (repeated addition) <br> Washing line, and other practical resources for counting. Concrete objects. Numicon; bundles of straws, bead strings $\begin{aligned} & 2+2+2+2+2=10 \\ & 2 \times 5=10 \\ & 2 \text { multipled by } 5 \\ & \text { Spairs } \\ & \text { Shops of 2 } \end{aligned}$ $\begin{aligned} & 5+5+5+5+5+5=30 \\ & 5 \times 6=30 \\ & 5 \text { multiplied by } 6 \\ & 6 \text { groups of } 5 \\ & 6 \text { hops of } 5 \end{aligned}$ <br> Problem solving with concrete objects (including money and measures <br> Use cuissenaire and bar method to develop the vocabulary relating to 'times' - <br> Pick up five, 4 times <br> Use arrays to understand multiplication can be done in any order (commutative) | Expressing multiplication as a number sentence using $x$ <br> Using understanding of the inverse and practical resources to solve missing number problems. $\begin{array}{lr} 7 \times 2=\square & \square=2 \times 7 \\ 7 \times \square=14 & 14=\square \times 7 \\ \square \times 2=14 & 14=2 \times \square \\ \square \otimes=14 & 14=\square \otimes \end{array}$ <br> Develop understanding of multiplication using array and number lines (see Year 1). Include multiplications not in the 2,5 or 10 times tables. Begin to develop understanding of multiplication as scaling (3 times bigger/taller) $4 \times 3=12$ <br> Doubling numbers up to $10+10$ Link with understanding scaling Using known doubles to work out double 2d numbers (double 15 = double $10+$ double 5) <br> Towards written methods <br> Use jottings to develop an understanding of doubling two digit numbers. | Missing number problems <br> Continue with a range of equations as in Year 2 but with appropriate numbers. <br> Mental methods <br> Doubling 2 digit numbers using partitioning <br> Demonstrating multiplication on a number line - jumping in larger groups of amounts $13 \times 4=10 \text { groups } 4=3 \text { groups of } 4$ <br> Written methods (progressing to $2 \mathrm{~d} \times 1 \mathrm{~d}$ ) <br> Developing written methods using understanding of visual images <br> Develop onto the grid method <br> Give children opportunities for children to explore this and deepen understanding using Dienes apparatus and place value counters |


| EXTRA GUIDANCE - PROGRESSION IN REASONING -MULTIPLICATION |  |  |
| :---: | :---: | :---: |
| Year 1 | Year 2 | Year 3 |
| Mental Strategies <br> Children should experience regular counting on and back from different numbers in 1 s and in multiples of 2,5 and 10 . <br> Children should memorise and reason with numbers in 2,5 and 10 times tables <br> They should see ways to represent odd and even numbers. This will help them to understand the pattern in numbers. <br> Children should begin to understand multiplication as scaling in terms of double and half. (e.g. that tower of cubes is double the height of the other tower) <br> Vocabulary <br> Ones, groups, lots of, doubling repeated addition groups of, lots of, times, columns, rows longer, bigger, higher etc times as (big, long, wide ...etc) <br> Generalisations <br> Understand 6 counters can be arranged as $3+3$ or 2+2+2 Understand that when counting in twos, the numbers are always even. <br> Some Key Questions <br> Why is an even number an even number? <br> What do you notice? <br> What's the same? What's different? <br> Can you convince me? <br> How do you know? | Mental Strategies <br> Children should count regularly, on and back, in steps of 2, 3, 5 and 10. <br> Number lines should continue to be an important image to support thinking, for example Children should explore times table facts in a variety of ways and use these to practice facts e.g. $\begin{aligned} & 2 \times 1= \\ & 2 \times 2= \\ & 2 \times 3= \end{aligned}$ <br> Use a clock face to support understanding of counting in 5 s. <br> Use money to support counting in $2 s, 5 s, 10 s, 20 s$, 50s <br> Vocabulary <br> multiple, multiplication array, multiplication tables <br> / facts <br> groups of, lots of, times, columns, rows <br> Generalisation <br> Commutative law shown on array (video) <br> Repeated addition can be shown mentally on a number line <br> Inverse relationship between multiplication and division. Use an array to explore how numbers can be organised into groups. <br> Some Key Questions <br> What do you notice? <br> What's the same? What's different? <br> Can you convince me? <br> How do you know? | Mental Strategies <br> Children should continue to count regularly, on and back, now including multiples of $4,8,50$, and 100 , and steps of $1 / 10$. <br> The number line should continue to be used as an important image to support thinking, and the use of informal jottings and drawings to solve problems should be encouraged. <br> Children should explore times table facts in a variety of ways and use these to practice facts e.g. $\begin{aligned} & 3 \times 1= \\ & 3 \times 2= \\ & 3 \times 3= \end{aligned}$ <br> Vocabulary <br> partition <br> grid method <br> inverse <br> Generalisations <br> Connecting $\times 2, \times 4$ and $\times 8$ through multiplication facts <br> Comparing times tables with the same times tables which is ten times bigger (scaling). If $4 \times 3=12$, then we know $4 \times 30$ $=120$. Use place value counters to demonstrate this. <br> When they know multiplication facts up to $\times 12$, do they know what $x 13$ is? (i.e. can they use $4 \times 12$ to work out $4 \times 13$ and $4 \times 14$ and beyond?) <br> Some Key Questions <br> What do you notice? <br> What's the same? What's different? <br> Can you convince me? <br> How do you know? |

CALCULATION POLICY - MULTIPLICATION
Years 4~6
Year 5
Continue with a range of equations as in Year 2 but with appropriate numbers. Also include equations with missing digits

## Mental methods

$X$ by 10, 100, 1000 using moving digits ITP Use practical resources and jottings to explore equivalent statements (e.g. $4 \times 35=2 \times 2 \times 35$ ) Recall of prime numbers up 19 and identify prime numbers up to 100 (with reasoning)
Solving practical problems where children need to scale up. Relate to known number facts. Identify factor pairs for numbers

## Written methods (progressing to $4 \mathrm{~d} \times 2 \mathrm{~d}$ )

Long multiplication using place value counters Children to explore how the grid method supports an understanding of long multiplication (for 2d $\times 2 \mathrm{~d}$ )


## Year 6

Continue with a range of equations as in Year 2 but with appropriate numbers. Also include equations with missing digits

## Mental methods

Identifying common factors and multiples of given numbers Solving practical problems where children need to scale up. Relate to known number facts.

## Written methods

Continue to refine and deepen understanding of written methods including fluency for using long multiplication

| $X$ | 1000 | $\mathbf{3 0 0}$ | $\mathbf{4 0}$ | $\mathbf{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0}$ | 10000 | 3000 | 400 | 20 |
| $\mathbf{8}$ | 8000 | 2400 | 320 | 16 |


| 231 |
| ---: |
| 1342 |
| $\times \quad 18$ |
| 13420 |
| 10736 |
| 24156 |



